Subspace Iteration Randomization and Singular Value Problems
نویسنده
چکیده
A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approximations, randomized algorithms have attracted researchers’ recent attention due to their surprising reliability and computational efficiency in different application areas. Typically, such algorithms are shown to compute with very high probability low-rank approximations that are within a constant factor from optimal, and are known to perform even better in many practical situations. In this paper, we present a novel error analysis that considers randomized algorithms within the subspace iteration framework and show with very high probability that highly accurate low-rank approximations as well as singular values can indeed be computed quickly for matrices with rapidly decaying singular values. Such matrices appear frequently in diverse application areas such as data analysis, fast structured matrix computations and fast direct methods for large sparse linear systems of equations and are the driving motivation for randomized methods. Furthermore, we show that the low-rank approximations computed by these randomized algorithms are actually rank-revealing approximations, and the special case of a rank-1 approximation can also be used to correctly estimate matrix 2-norms with very high probability. Our numerical experiments are in full support of our conclusions. key words: low-rank approximation, randomized algorithms, singular values, standard Gaussian matrix.
منابع مشابه
Application of variational iteration method for solving singular two point boundary value problems
In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem w...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملVector Extrapolation Applied to Truncated Singular Value Decomposition and Truncated Iteration
This paper is concerned with the computation of accurate approximate solutions of linear systems of equations and linear least-squares problems with a very ill-conditioned matrix and error-contaminated data. The solution of this kind of problems requires regularization. Common regularization methods include the truncated singular value decomposition and truncated iteration with a Krylov subspac...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015